Self-Assembly

Finite, Spherical Coordination Networks that Self-**Organize from 36 Small Components****

Masahide Tominaga, Keisuke Suzuki, Masaki Kawano, Takahiro Kusukawa, Tomoji Ozeki, Shigeru Sakamoto, Kentaro Yamaguchi, and Makoto Fujita*

Highly symmetric structures often appear in nature as revealed by, for example, the capsids of spherical viruses that have icosahedral symmetry consisting of 60n identical protein subunits.^[1] The reason for the high symmetry lies behind the principle that increasing the number of elements with the same symmetry reduces the amount of independent structural information, which is directly related to the length of DNA. Thus, the self-organization of tiny subunits into a giant biological molecule can be regarded as the process of not only structural growth but of the amplification of molecular information. We show herein that, through metal-ligand interactions, [2,3] simple banana-shaped organic molecules self-organize into finite, spherical coordination networks with a diameter of up to 7 nm, which is in contrast to the formation of two-dimensional (2D) infinite networks that occurs with linear organic ligands. The spherical coordination networks consist of 36 components, 12 equivalent metal centers (M) and 24 equivalent ligands (L), and have cuboctahedron symmetry. By attaching a functional group (e.g., C_{60} or porphyrin) to each ligand, 24 functional groups are aligned equivalently at the periphery of the sphere.

Over the last decade, extensive studies have been made on infinite coordination networks that are formed by the complexation of exo-multidentate ligands with transitionmetal ions. A typical and simple example is given by a 2D grid complex that forms from a rodlike ligand and a metal (Figure 1a).^[4] We expect that, if the ligand framework is slightly bent, the coordination network will develop with a

[*] Dr. M. Tominaga, K. Suzuki, Dr. M. Kawano, Dr. T. Kusukawa, Prof. M. Fujita

Department of Applied Chemistry, School of Engineering The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

Fax: (+81) 3-5841-7257

E-mail: mfujita@appchem.t.u-tokyo.ac.jp

Dr. S. Sakamoto, Prof. K. Yamaguchi

Chemical Analysis Center, Chiba University

Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

Dr. T. Ozeki

Department of Chemistry and Materials Science Tokyo Institute of Technology

2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

[**] This research was supported by the CREST project of the Japan Science and Technology Corporation (JST), for which M.F. is the principal investigator. We thank S. Adachi (KEK) for supporting Xray crystallographic measurement. This work has been performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2003G186).

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Zuschriften

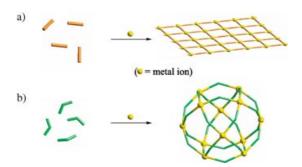


Figure 1. Schematic representation of the self-assembly of coordination networks from metal ions which favor a square-planar coordination geometry and different bridging ligands. a) Linear ligands are expected to self-assemble to give 2D grid complexes. b) Slightly bent ligands are expected to self-assemble to give spherical finite complexes.

constant radius of curvature and a spherical finite network will be obtained (Figure 1b), reminiscent of the formation of graphite versus that of fullerene from sp² hybridized carbon atoms. Based on this idea, we designed ligands **1a–c** and

examined their complexation with naked palladium(II) ions which favor a square-planar coordination environment.^[5]

When ligand 1a (0.02 mmol) was treated with Pd(NO₃)₂ (0.01 mmol) in [D₆]DMSO (1.0 mL) at 70 °C for 4 h, the quantitative self-assembly of a single product was detected by ¹H NMR spectroscopy. ^[6] Only five signals are observed indicating that all the ligands are located equivalently in the product and have same inherent symmetry (Figure 2). The resonance signals were relatively broad at room temperature

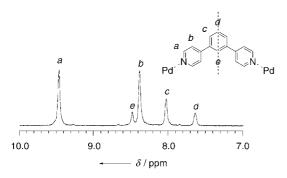
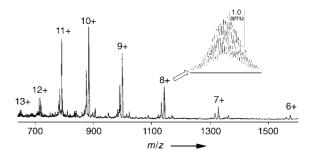



Figure 2. The 1 H NMR spectrum (aromatic region) of the product assembled from Pd(NO₃)₂ and ligand 1a (2 equiv; 500 MHz, [D₆]DMSO, 25 $^{\circ}$ C, TMS).

but became sharp at higher temperatures, characteristic of very large species whose motion is slow on the NMR time scale. Downfield shift of the signals, particularly for Py_a ($\Delta \delta =$ 0.79 ppm; Py = pyridine), was ascribed to the metal-ligand complexation. Diffusion-ordered NMR spectroscopy (DOSY) showed a single band at the diffusion coefficiency of 1.1×10^{-10} m² s⁻¹, from which the diameter of the product was roughly estimated to be 3.6 nm.^[7] After anion exchange from [NO₃]⁻ to [PF₆]⁻ ions, cold-spray ionization mass spectrometry (CSI-MS)^[8] clearly indicated an $M_{12}L_{24}$ composition with the molecular weight of 10330 Da by a series of $[M-(PF_6^-)_n]^{n+}$ (n=6-13) peaks (Figure 3). [9] Fragmentation in the MS measurement was hardly observed except the dissociation of counteranions, which demonstrates the remarkable stability of the product in solution. Elemental analysis was also consistent with the M₁₂L₂₄ composition.

Figure 3. CSI-MS spectrum showing the formation of $M_{12}L_{24}$ product $(PF_6^- salt)$.

From the detailed NMR and mass spectroscopic measurements, the formation of the roughly spherical giant molecule 2a was deduced because of good agreements with the M₁₂L₂₄ composition and the equivalence of all the ligands (Figure 4a). The symmetry of 2a is dictated by a cuboctahedron, which is formed by truncating each of the eight vertices of a cube to generate eight triangular faces. The 12 equivalent vertices and 24 equivalent edges of the cuboctahedron can be superimposed on the 12 palladium(II) centers and 24 bridging ligands, respectively (Figure 4b). Related cuboctahedral complexes with Cotton-type copper(II) dinuclear tetracarboxylate junctions have been reported, [10] but no solution behavior is reported probably because of their poor solubility in common polar solvents. Since these copper(II) species are generated by inert dinuclear tetracarboxylate formation, instead of self-assembly, oligomeric products are produced as well and the yields are moderate or not well determined. In contrast, spherical complex 2a immediately assembles from 36 components in a quantitative yield thanks to moderately labile palladium(II)-pyridine interactions.

A scanning tunneling microscopy (STM) study revealed the structural integrity of **2a** (Figure 5a) even under STM conditions. More significantly, the image obtained on a graphite surface demonstrates that the spheres **2a** behaves as "molecular particles" with precise chemical structure and uniformed dimension (height) of 3.5 nm (Figure 5b), which is consistent with the DOSY measurement and molecular model prediction.

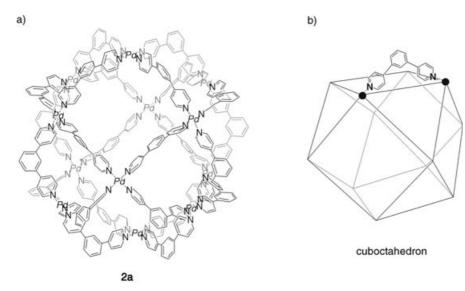


Figure 4. a) Molecular structure 2a assembled from 24 bidentate ligands 1a and 12 metal ions. b) Schematic representation of the cuboctahedral frameworks of 2a.

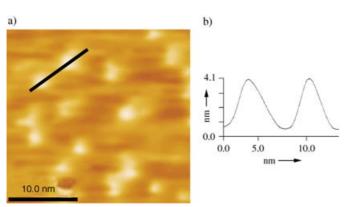


Figure 5. a) STM image of individual spheres 2a on the graphite at room temperature. b) Height profile of the STM image.

Reliable evidence for the spherical M₁₂L₂₄ structure was obtained by X-ray crystallographic analysis of 2b, which is an analogue of 2a where ligand 1a is replaced by 1b.[11] Single crystals of 2b were obtained by very slow vapor diffusion of 1,1,2-trichloroethane into a DMSO solution of 2b. With a CCD detector, MoK $_{\alpha}$ radiation (55 kV, 30 mA) afforded low resolution data (only 874 unique reflections (> $2\sigma(I)$)), which were insufficient for solving the structure. The poor quality of the data was due to severe disorder of solvent molecules and anions in the extraordinarily large void within the spherical framework of 2b. However, synchrotron X-ray radiation with high flux and low divergence provided much higher quality of data with 2717 unique reflections (>2 $\sigma(I)$), from which the spherical M₁₂L₂₄ structure of **2b** was solved with all the heavy atoms being refined anisotropically (Figure 6). The crystal system is cubic and the cell volume is $108456(16) \text{ Å}^3$. Surprisingly, the framework of **2b** occupies only 20% of the cell volume (as estimated by Platon program), remaining 80% being occupied by disordered solvent molecules and counterions. The diameter of a sphere in which 2b is inscribed is 3.4 nm. The shortest Pd–Pd separation is 1.3 nm while the longest one is 2.6 nm.

In the crystal, the spherical complex **2b** enjoys a cubic close-packed structure. Each molecule of **2b** is linked to twelve neighboring spheres by Pd^{II}-NO₃⁻-Pd^{II} bridges, which presumably stabilize the crystal of **2b** despite approximately 80% void space.

Ligand 1c is effectively an expanded version of the framework of 1a. From Pd(NO₃)₂ and ligand 1c in 1:2 stoichiometry, we again observed the self-assembly of a single and highly symmetric product, 2c (an analogue of 2a where ligand 1a is replaced by 1c) which was assigned by CSI-MS measurement. The molecular mass of 13 982 Da for 2c was clearly demonstrated (see

Supporting Information). Molecular modeling of **2c** by Cerius² program predicted a diameter of 5.2 nm.^[12]

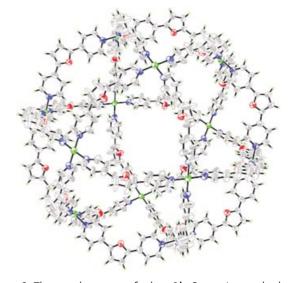
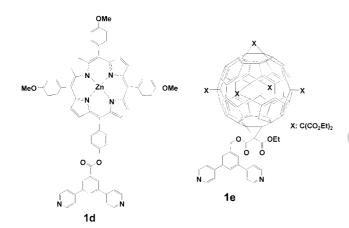



Figure 6. The crystal structure of sphere ${\bf 2b}$. Counterions and solvent molecules are omitted for clarity (green Pd, red O, blue N, gray C).

We also emphasize that, by attaching a functional group on each ligand, 24 functional groups are aligned equivalently at the periphery of the sphere. Metal–porphyrins are known to collect light energy when they are aggregated as in light-harvesting proteins or chlorophylls. To mimic these aggregates, we synthesized ligand 1d in which a porphyrin unit is attached on the backbone of 1a. By simply mixing this ligand with Pd(NO₃)₂ in a 2:1 ratio in DMSO, porphyrin nanoball 2d with regular arrangement of the 24 porphyrin units at the periphery of the sphere was immediately assembled (Figure 7). The NMR spectrum of this complex at 25 °C shows the equivalence of the 24 attached porphyrin ligands.

Zuschriften

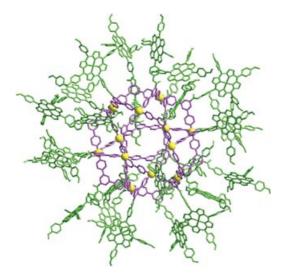


Figure 7. A molecular modeling study of 2d optimized by a force-field calculation with Cerius² 3.5 package (Pd yellow, the porphyrin-based and pyridine-based units of ligand 1d are green and purple, respectively).

The DOSY spectrum showed a single band, which suggests the quantitative formation of 2d (Figure 8b). Similarly, fullerene nanoball 2e was assembled from ligand 1e and Pd(NO₃)₂ (Figure 8c). The diffusion coefficients of 2b, 2d, and 2e determined by DOSY experiments were 1.20, 0.60, and $0.76 \times 10^{-10} \,\mathrm{m}^2 \mathrm{s}^{-1}$, respectively. These values give an

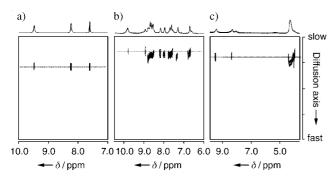


Figure 8. DOSY spectra of the sphere a) 2b, b) 2d, and c) 2e (500 MHz, [D₆]DMSO, 25 °C, TMS).

© 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

estimation of the dimensions of 2b, 2d, and 2e (3.4, 6.7, and 5.3 nm, respectively), which agree quite well with the X-ray structure (3.4 nm for **2b**) and refined structures with Cerius² program (3.4, 7.4, and 6.0 nm for **2b**, **2d** and **2e**, respectively).

Received: July 24, 2004

Published Online: September 28, 2004

Keywords: fullerenes · molecular spheres · palladium · porphyrinoids · self-assembly

- [1] a) J. M. Grimes, J. N. Burroughs, P. Gouet, J. M. Diprose, R. Malby, S. Ziéntara, P. P. C. Mertens, D. I. Stuart, Nature 1998, 395, 470 – 478; b) W. R. Wikoff, L. Liljas, R. L. Duda, H. Tsuruta, R. W. Hendrix, J. E. Johnson, *Science* **2000**, 289, 2129–2133.
- [2] Recent reviews: a) J.-M. Lehn, Comprehensive Supramolecular Chemistry, Vol. 2 (Eds.: J. L. Atwood, J. E. D. Davis, D. D. Macnicol, F. Vögtle), Pergamon, Oxford, 1996; b) L. R. Mac-Gillivray, J. L. Atwood, Angew. Chem. 1999, 111, 1080-1096; Angew. Chem. Int. Ed. 1999, 38, 1018-1033; c) S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853-908; d) M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Chem. Commun. 2001, 509-518; e) G. F. Swiegers, T. J. Malefetse, Chem. Eur. J. 2001, 7, 3637 – 3643.
- [3] a) R. W. Saalfrank, A. Stark, K. Peters, H. G. von Schnering, Angew. Chem. 1988, 100, 878-880; Angew. Chem. Int. Ed. Engl. 1988, 27, 851-853; b) P. Baxter, J.-M. Lehn, A. DeCian, J. Fischer, Angew. Chem. 1993, 105, 92-95; Angew. Chem. Int. Ed. Engl. 1993, 32, 69-72; c) M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469-471; d) T. Beissel, R. E. Power, K. N. Raymond, Angew. Chem. 1996, 108, 1166-1168; Angew. Chem. Int. Ed. Engl. 1996, 35, 1084-1086; e) C. M. Hartshorn, P. J. Steel, Chem. Commun. 1997, 541-542; f) N. Takeda, K. Umemoto, K. Yamaguchi, M. Fujita, Nature 1999, 398, 794-796; g) B. Olenyuk, J. A. Whiteford, A. Fechtenkötter, P. J. Stang, Nature 1999, 398, 796-799.
- a) R. W. Gable, B. F. Hoskins, R. Robson, J. Chem. Soc. Chem. Commun. 1990, 1677-1678; b) M. Fujita, Y. J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 1994, 116, 1151-1152; c) K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. 2000, 112, 4001 - 4003; Angew. Chem. Int. Ed. 2000, 39, 3843 - 3845; d) S.-I. Noro, S. Kitagawa, M. Kondo, K. Seki, Angew. Chem. 2000, 112, 2161-2164; Angew. Chem. Int. Ed. 2000, 39, 2081-2084.
- [5] a) D. K. Chand, K. Biradha, M. Fujita, Chem. Commun. 2001, 1652-1653; b) D. K. Chand, K. Biradha, M. Fujita, S. Sakamoto, K. Yamaguchi, Chem. Commun. 2002, 2486-2487; c) D. K. Chand, M. Fujita, K. Biradha, S. Sakamoto, K. Yamaguchi, Dalton Trans. 2003, 2750-2756.
- [6] For the physical properties of the products 2a-e, see the Supporting Information.
- [7] D. Wu, A. Chen, C. S. Johnson, Jr., J. Magn. Reson. Ser. A 1995, 115.260 - 264.
- [8] CSI-MS is quite effective for analyzing the solution structures of metal complexes: a) S. Sakamoto, M. Fujita, K. Kim, K. Yamaguchi, Tetrahedron 2000, 56, 955-964; b) Y. Yamanoi, Y. Sakamoto, T. Kusukawa, M. Fujita, S. Sakamoto, K. Yamaguchi, J. Am. Chem. Soc. 2001, 123, 980-981.
- [9] Spheres 2a, 2b, and 2c were analyzed by CSI-MS. A series of $[M-(PF_6)_n]^{n+}$ peaks was observed. See the Supporting Informa-
- [10] a) B. Moulton, J. Lu, A. Mondal, M. J. Zaworotko, Chem. Commun. 2001, 863 – 864; b) M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 4368-4369.

- [11] X-ray crystallographic analysis of 2b: The diffraction data was measured at 120 K ($\lambda = 0.6890 \text{ Å}$) at PF-AR of the High Energy Accelerator Research Organization (KEK). X-ray data showed no significant crystal decay during data collection. $Pd_{12}(C_{13}N_2O)_{24}(NO_3)_{24}$, $M_r = 7568.80$, cubic, space group $Fm\bar{3}m$, T=120(2) K, a=47.689(4) Å, V=108456(16) Å³, Z=4. Anisotropic least-squares refinement for the cage atoms and isotropic for the anion and solvent molecules (122 parameters) on 2658 independent merged reflections ($R_{\text{int}} = 0.0753$) converged at $wR_2(F^2) = 0.1770$ for all data; $R_1(F) = 0.1518$ for 1718 observed data $(I > 2\sigma(I))$, GOF = 1.708. Because two independent nitrate anions sit on the special positions ((y, 0, y)) and (0.25, y)(0, 0.25)), their models are not fitted for the ideal geometry of D_{3d} symmetry. All the solvent molecules could not be treated properly because of their severely disordered structures. Therefore, all large residual electron density peaks were assigned to chlorine atoms of 1,1,2-trichloroethane molecules (poor solvent of crystallization). CCDC-238399 (2b) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).
- [12] A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024 – 10035.